lunes, 15 de junio de 2009

IPv6

IPv6 está destinado a sustituir a IPv4, cuyo límite en el número de direcciones de red admisibles está empezando a restringir el crecimiento de Internet y su uso, especialmente en China, India, y otros países asiáticos densamente poblados. Pero el nuevo estándar mejorará el servicio globalmente; por ejemplo, proporcionará a futuras celdas telefónicas y dispositivos móviles con sus direcciones propias y permanentes. Al día de hoy se calcula que las dos terceras partes de las direcciones que ofrece IPv4 ya están asignadas.
IPv4 posibilita 4.294.967.296 (232) direcciones de red diferentes, un número inadecuado para dar una dirección a cada persona del planeta, y mucho menos a cada vehículo, teléfono, PDA, etcétera. En cambio, IPv6 admite 340.282.366.920.938.463.463.374.607.431.768.211.456 (2128 o 340 sextillones) direcciones —cerca de 3,4 × 1020 (340 trillones) direcciones por cada pulgada cuadrada (6,7 × 1017 o 670 mil billones direcciones/mm2) de la superficie de La Tierra.
Propuesto por el Internet Engineering Task Force en
1994 (cuando era llamado "IP Next Generation" o IPng), la adopción de IPv6 por parte de Internet es menor, la red todavía está dominada por IPv4. La necesidad de adoptar el nuevo protocolo debido a la falta de direcciones ha sido parcialmente aliviada por el uso de la técnica NAT. Pero NAT rompe con la idea originaria de Internet donde todos pueden conectarse con todos y hace difícil o imposible el uso de algunas aplicaciones P2P, de voz sobre IP y de juegos multiusuario. Un posible factor que influya a favor de la adopción del nuevo protocolo podría ser la capacidad de ofrecer nuevos servicios, tales como la movilidad, Calidad de Servicio (QoS), privacidad, etc.
Otra vía para la popularización del protocolo es la adopción de este por parte de instituciones. El
gobierno de los Estados Unidos ha ordenado el despliegue de IPv6 por todas sus agencias federales para el año 2008.
IPv6 es la segunda versión del
Protocolo de Internet que se ha adoptado para uso general. También hubo un IPv5, pero no fue un sucesor de IPv4; mejor dicho, fue un protocolo experimental orientado al flujo de streaming que intentaba soportar voz, video y audio.
El cambio más grande de IPv4 a IPv6 es la longitud de las direcciones de red. Las direcciones IPv6, definidas en el
RFC 2373 y RFC 2374, son de 128 bits; esto corresponde a 32 dígitos hexadecimales, que se utilizan normalmente para escribir las direcciones IPv6, como se describe en la siguiente sección. El número de direcciones IPv6 posibles es de 2128 ≈ 3.4 x 1038. Este número puede también representarse como 1632, con 32 dígitos hexadecimales, cada uno de los cuales puede tomar 16 valores. En muchas ocasiones las direcciones IPv6 están compuestas por dos partes lógicas: un prefijo de 64 bits y otra parte de 64 bits que corresponde al identificador de interfaz, que casi siempre se genera automáticamente a partir de la dirección MAC de la interfaz a la que está asignada la dirección.

IPv4

Una dirección IP se representa mediante un número binario de 32 bits (IPv4). Las direcciones IP se expresan como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal máximo de cada octeto es 255 (el número binario de 8 bits más alto es 11111111, y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255 en total).

Hay tres clases de direcciones IP que una organización puede recibir de parte de Internet Assigned Numbers authority (IANA): clase A, clase B y clase C. En la actualidad, IANA reserva l as direcciones de clase A para los gobiernos de todo el mundo (aunque en el pasado se le hayan otorgado a empresas de gran envergadura como, por ejemplo, Hewlett Packard) y las direcciones de clase B para las medianas empresas. Se otorgan direcciones de clase C para todos los demás solicitantes.
Cada clase de red permite una cantidad fija de equipos (hosts). En una red de clase A, se asigna el primer octeto para identificar la red, reservando los tres últimos octetos (24 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 224 (menos dos: las direcciones reservadas de broadcast [tres últimos octetos a 255] y de red [tres últimos octetos a 0]), o sea, 16.777.214 hosts.

En una red de clase B, se asignan los dos primeros octetos para identificar la red, reservando los dos octetos finales (16 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 216 (menos dos), o 65.534 hosts.
En una red de clase C, se asignan los tres primeros octetos para identificar la red, reservando el octeto final (8 bits) para que sea asignado a los hosts, de modo que la cantidad máxima de hosts es 28 (menos dos), o 254 hosts.

Hay ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan "direcciones privadas". Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT), o un servidor proxy, para conectarse a una red pública, o por los hosts que no se conectan a Internet.
A partir de 1993, ante la previsible futura escasez de direcciones IPv4 debido al crecimiento exponencial de hosts en Internet, se empezó a introducir el sistema CIDR, que pretende en líneas generales establecer una distribución de direcciones más fina y granulada, calculando las direcciones necesarias y "desperdiciando" las mínimas posibles, para rodear el problema que las distribución por clases había estado gestando. Este sistema es, de hecho, el empleado actualmente para la delegación de direcciones.
Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño, a menudo se usa TCP/IP, aunque la conectividad de capa de red no sea necesaria fuera de la red. Los bancos son buenos ejemplos; pueden utilizar TCP/IP para conectar los cajeros automáticos (ATM). Estas máquinas no se conectan a la red pública, de manera que las direcciones privadas son ideales para ellas. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles.

Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) o servidor proxy para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles. Según lo acordado, cualquier tráfico que posea una dirección destino dentro de uno de los intervalos de direcciones privadas NO se enrutará a través de Internet.
La expresión de direcciones IPv4 es decimal, y se separa cada octeto por un carácter ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255, salvo algunas excepciones. Los ceros iniciales, si los hubiera, se pueden obviar.

DIRECCIONES IP PRIVADAS

Algunos rangos de direcciones IP han sido reservados para la operación de redes privadas que usan el protocolo IP. Cualquier organización puede usar estas direcciones IP en sus redes privadas sin la necesidad de solicitarlo a algún Registro de Internet. La principal condición establecida para el uso de direcciones IP privadas es que los dispositivos que usen estas direcciones IP no necesiten ser alcanzados desde Internet. Para una descripción más detallada acerca del espacio de direcciones IP privadas.

DIRECCIONES IP PUBLICAS

Las direcciones IP públicas constituyen el espacio de direcciones de Internet. Estas son asignadas para ser globalmente únicas de acuerdos a los objetivos que se describirán más adelante en este documento. El principal propósito de este espacio de direcciones es permitir la comunicación usando el IPv4 sobre Internet. Un propósito secundario es permitir la comunicación entre redes privadas interconectadas.


Objetivos de la distribución del espacio de direcciones IP públicas.De acuerdo con lo estipulado en el RFC 2050 cada asignación y colocación de direcciones IP públicas debe garantizar que las siguientes cuatro condiciones se cumplan.
ExclusividadCada dirección IP pública alrededor del mundo debe ser única. Este es un requerimiento absoluto el cual garantiza que cada dispositivo en el Internet pueda ser identificado de manera única.ConservaciónEs la distribución justa del espacio de direcciones IP de acuerdo a las necesidades operacionales de los usuarios finales que operan redes y que usan este espacio de direcciones IP. Con el fin de maximizar el tiempo de vida de los recursos del espacio de direcciones IP públicas, las direcciones IP deben ser distribuidas de acuerdo a las necesidades actuales de los usuarios finales con lo cual se evita el acumulamiento de direcciones IP sin utilizarRuteabilidadEs la distribución global de las direcciones IP en una forma jerárquica, lo cual permite la escalabilidad del ruteo de las direcciones IP. Esta escalabilidad es necesaria para asegurar una apropiada operación del ruteo en Internet.RegistroEs el suministro de documentación acerca de las asignaciones y colocaciones hechas en el espacio de direcciones IP. Esto es necesario para asegurar la exclusividad y proveer de información para la localización de errores en Internet en todos los niveles.Es del interés de la comunidad de Internet en general que los objetivos arriba mencionados sean perseguidos. Sin embargo debe notarse que los objetivos de conservación y ruteabilidad son objetivos que frecuentemente generan conflictos. Los objetivos mencionados, pueden algunas veces, estar en conflicto con los intereses de los ISP, NIR o los usuarios finales. En estos casos es necesario realizar un análisis cuidadoso para cada situación en particular para poder alcanzar un compromiso apropiado entre las partes relacionadas en el conflicto.

CLASES DE DIRECCIONES

Para adaptarse a redes de distintos tamaños y para ayudar a clasificarlas, las direcciones IP se dividen en grupos llamados clases.
Esto se conoce como direccionamiento classful. Cada dirección IP completa de 32 bits se divide en la parte de la red y parte del host.
Un bit o una secuencia de bits al inicio de cada dirección determinan su clase. Son cinco las clases de direcciones IP.
La dirección Clase A se diseñó para admitir redes de tamaño extremadamente grande, de más de 16 millones de direcciones de host disponibles.
Las direcciones IP Clase A utilizan sólo el primer octeto para indicar la dirección de la red. Los tres octetos restantes son para las direcciones host.
El primer bit de la dirección Clase A siempre es 0. Con dicho primer bit, que es un 0, el menor número que se puede representar es 00000000, 0 decimal.
El
valor más alto que se puede representar es 01111111, 127 decimal. Estos números 0 y 127 quedan reservados y no se pueden utilizar como direcciones de red. Cualquier dirección que comience con un valor entre 1 y 126 en el primer octeto es una dirección Clase A.
La red 127.0.0.0 se reserva para las
pruebas de loopback. Los Routers o las máquinas locales pueden utilizar esta dirección para enviar paquetes nuevamente hacia ellos mismos. Por lo tanto, no se puede asignar este número a una red.

La dirección Clase B
se diseñó para cumplir las necesidades de redes de tamaño moderado a grande. Una dirección IP Clase B utiliza los primeros dos de los cuatro octetos para indicar la dirección de la red. Los dos octetos restantes especifican las direcciones del host.
Los primeros dos bits del primer octeto de la dirección Clase B siempre son 10. Los seis bits restantes pueden poblarse con unos o ceros. Por lo tanto, el menor número que puede representarse en una dirección Clase B es 10000000, 128 decimal. El número más alto que puede representarse es 10111111, 191 decimal. Cualquier dirección que comience con un valor entre 128 y 191 en el primer octeto es una dirección Clase B.

El espacio de direccionamiento Clase C es el que se utiliza más frecuentemente en las clases de direcciones originales. Este espacio de direccionamiento tiene el propósito de admitir redes pequeñas con un máximo de 254 hosts.

Una dirección Clase C comienza con el binario 110. Por lo tanto, el menor número que puede representarse es 11000000, 192 decimal. El número más alto que puede representarse es 11011111, 223 decimal. Si una dirección contiene un número entre 192 y 223 en el primer octeto, es una dirección de Clase C.

La dirección Clase D se creó para permitir multicast en una dirección IP. Una dirección multicast es una dirección exclusiva de red que dirige los paquetes con esa dirección destino hacia grupos predefinidos de direcciones IP. Por lo tanto, una sola estación puede transmitir de forma simultánea una sola corriente de
datos a múltiples receptores.

El espacio de direccionamiento Clase D, en forma similar a otros espacios de direccionamiento, se encuentra limitado matemáticamente. Los primeros cuatro bits de una dirección Clase D deben ser 1110. Por lo tanto, el primer rango de octeto para las direcciones Clase D es 11100000 a 11101111, o 224 a 239. Una dirección IP que comienza con un valor entre 224 y 239 en el primer octeto es una dirección Clase D.

Se ha definido una dirección Clase E. Sin embargo, la
Fuerza de tareas de ingeniería de Internet (IETF) ha reservado estas direcciones para su propia investigación. Por lo tanto, no se han emitido direcciones Clase E para ser utilizadas en Internet. Los primeros cuatro bits de una dirección Clase E siempre son 1s. Por lo tanto, el rango del primer octeto para las direcciones Clase E es 11110000 a 11111111, o 240 a 255.

DIRECCIONES DE INTERNET

DIRECCIONAMIENTO IP

Para que dos sistemas se comuniquen, se deben poder identificar y localizar entre sí. Aunque las direcciones de la Figura no son direcciones de red reales, representan el concepto de agrupamiento de las direcciones.
Este utiliza A o B para identificar la red y la secuencia de números para identificar el host individual.
Un
computador puede estar conectado a más de una red. En este caso, se le debe asignar al sistema más de una dirección. Cada dirección identificará la conexión del computador a una red diferente. No se suele decir que un dispositivo tiene una dirección sino que cada uno de los puntos de conexión (o interfaces) de dicho dispositivo tiene una dirección en una red. Esto permite que otros computadores localicen el dispositivo en una determinada red.
La combinación de letras (dirección de red) y el número (dirección del host) crean una dirección única para cada dispositivo conectado a la red. Cada computador conectado a una red
TCP/IP debe recibir un identificador exclusivo o una dirección IP. Esta dirección, que opera en la Capa 3, permite que un computador localice otro computador en la red.
Todos los computadores también cuentan con una dirección
física exclusiva, conocida como dirección MAC. Estas son asignadas por el fabricante de la tarjeta de interfaz de la red. Las direcciones MAC operan en la Capa 2 del modelo OSI.
Para que el uso de la dirección IP sea más sencillo, en general, la dirección aparece escrita en forma de cuatro números decimales separados por puntos. Por ejemplo, la dirección IP de un computador es 192.168.1.2. Otro computador podría tener la dirección 128.10.2.1. Esta forma de escribir una dirección se conoce como formato decimal punteado.
En esta notación, cada dirección IP se escribe en cuatro partes separadas por puntos. Cada parte de la dirección se conoce como octeto porque se compone de ocho dígitos binarios.
Por ejemplo, la dirección IP 192.168.1.8 sería 11000000.10101000.00000001.00001000 en una notación binaria. La notación decimal punteada es un
método más sencillo de comprender que el método binario de unos y ceros.
Esta notación decimal punteada también evita que se produzca una gran cantidad de errores por transposición, que sí se produciría si sólo se utilizaran números binarios. El uso de decimales separados por puntos permite una mejor comprensión de los patrones numéricos.
Tanto los números binarios como los decimales de la Figura representan a los mismos
valores, pero resulta más sencillo apreciar la notación decimal punteada.
Este es uno de los
problemas frecuentes que se encuentran al trabajar directamente con números binarios. Las largas cadenas de unos y ceros que se repiten hacen que sea más probable que se produzcan errores de transposición y omisión.
Resulta más sencillo observar la relación entre los números 192.168.1.8 y 192.168.1.9, mientras que 11000000.10101000.00000001.00001000 y
11000000.10101000.00000001.00001001 no son fáciles de reconocer. Al observar los binarios, resulta casi imposible apreciar que son números consecutivos.

EL FUTURO DE ETHERNET

Con el amplio despliegue de fibra óptica de los operadores, muy pronto se podrá ofrecer un nuevo concepto de acceso a Internet de alta velocidad utilizando Gigabit Ethernet en casa del usuario.
Gigabit Ethernet es una alternativa más económica que la implementación de redes ATM o basadas en SDH, y la existencia de GBIC de largo alcance (70 metros) permite cubrir totalmente una red MAN.
La posibilidad de tener Gigabit Ethernet en segmentos de cobre permitiría incluso llevar Gigabit de una forma económica.
En el mundo empresarial actual, centrado en la tecnología, la información se ha convertido en la nueva moneda y las compañías cada vez dependen más de ella para llevar a cabo sus actividades diarias. Las decisiones sobre TI tienen consecuencias a largo plazo y las empresas necesitan seleccionar la tecnología que proporcionará mayor ancho de banda, escalabilidad, rendimiento y seguridad, aumentando así la productividad de los empleados y el beneficio empresarial.
En nuestra opinión, es probable que la demanda se dirija hacia 10 Gigabit Ethernet. Es el mismo planteamiento que pudiera haber surgido hace unos años referido a Ethernet–Gigabit Ethernet. Hoy la respuesta está ahí y nadie lo cuestiona: Gigabit Ethernet forma parte del networking empresarial.
La evolución hacia 10GE parece pues bastante obvia. Además, como comenta John Matthews, analista de Ovum, Gigabit Ethernet cuenta con una gran ventaja y es que como “la gente está familiarizada con Ethernet, cuando piensa en Gigabit Ethernet lo ven como una evolución natural de lo que han estado haciendo siempre”.

ETHERNET 10 GIGABIT

Es el más reciente y más rápido de los estándares Ethernet. IEEE 802.3ae define una versión de Ethernet con una velocidad nominal de 10 GBit/s, diez veces más rápido que gigabit Ethernet.
El nuevo estándar 10-gigabit Ethernet contiene siete tipos de medios para LAN, MAN y WAN. Ha sido especificado en el estándar suplementario IEEE 802.3ae, y será incluido en una futura revisión del estándar
IEEE 802.3.
Hay diferentes estándares para el nivel físico (PHY). La letra "X" significa codificación 8B/10B y se usa para interfaces de cobre. La variedad óptica más común se denomina LAN PHY, usada para conectar routers y switches entre sí. Aunque se denomine como LAN se puede usar con 10GBase-LR y -ER hasta 80km. LAN PHY usa una velocidad de línea de 10.3 Gbit/s y codificación 66B. WAN PHY (marcada con una "W") encapsula las tramas Ethernet para la transmisión sobre un canal SDH/SONET STS-192c.
· 10GBASE-SR ("short range") -- Diseñada para funcionar en distancias cortas sobre cableado de
fibra óptica multi-modo, permite una distancia entre 26 y 82 m dependiendo del tipo de cable. También admite una distancia de 300 m sobre una nueva fibra óptica multi-modo de 2000 MHz·km (usando longitud de onda de 850nm).
· 10GBASE-CX4 -- Interfaz de cobre que usa cables
InfiniBand CX4 y conectores InfiniBand 4x para aplicaciones de corto alcance (máximo 15 m) (tal como conectar un switch a un router). Es el interfaz de menor coste pero también el de menor alcance.
· 10GBASE-LX4 -- Usa multiplexión por división de longitud de onda para distancias entre 240 m y 300 m sobre fibra óptica multi-modo. También admite hasta 10 Km. sobre fibra mono-modo. Usa longitudes de onda alrededor de los 1310 nm.
· 10GBASE-LR ("long range")-- Este estándar permite distancias de hasta 10 Km. sobre fibra mono-modo (usando 1310nm).
· 10GBASE-ER ("extended range")-- Este estándar permite distancias de hasta 40 Km. sobre fibra mono-modo (usando 1550nm). Recientemente varios fabricantes han introducido interfaces enchufables de hasta 80-km.
· 10GBASE-LRM -
http://www.ieee802.org/3/aq/, 10 Gbit/s sobre cable de FDDI- de 62.5 µm.
· 10GBASE-SW, 10GBASE-LW y 10GBASE-EW. Estas variedades usan el WAN PHY, diseñado para interoperar con equipos OC-192/STM-64 SONET/SDH usando una trama ligera SDH/SONET. Se corresponden en el nivel físico con 10GBASE-SR, 10GBASE-LR y 10GBASE-ER respectivamente, y por ello usan los mismos tipos de fibra y permiten las mismas distancias. (No hay un estándar WAN PHY que corresponda al 10GBASE- LX4.).
Contrariamente a los primeros sistemas Ethernet, 10-gigabit Ethernet está basado principalmente en el uso de cables de fibra óptica (con la excepción del -CX4). Sin embargo, el IEEE está desarrollando un estándar de 10- gigabit Ethernet sobre par trenzado (10GBASE-T), usando cable de categoría 6A cuya aprobación esta planificada para el año 2006. Además este estándar en desarrollo está cambiando el diseño de half-duplex, con difusión a todos los nodos, hacia solo admitir redes conmutadas full-duplex. Se asegura que este sistema tiene una compatibilidad muy alta con las primeras redes Ethernet y las del estándar IEEE 802. 10-gigabit Ethernet es aún muy nueva, y falta ver que estándares ganarán aceptación comercial.

ETHERNET GIGABIT

Gigabit Ethernet (1000 Mbps Ethernet) es una extensión del estándar IEEE 802.3. Gigabit Ethernet está construido sobre el mismo protocolo de Fast Ethernet pero incrementa la velocidad en 10 veces sobre Fast Ethernet.
En 1999, la IEEE probó la especificación 802.3ab, también conocida como 1000BaseT, que define Gigabit Ethernet (GE) corriendo sobre cable de cobre, es decir Gigabit Ethernet puede correr sobre el cable de cobre categoría 5, pero también corre sobre fibra óptica monomodo y multimodo.
También GE es más fácil de implementar y mucho más es mucho más rápido que otras tecnologías como ATM (hasta 622 Mbps) o FDDI (100 Mbps).
Un nuevo estándar de GE acaba de ser aprobado por la IEEE, el IEEE 802.3ae opera a 10 Gigabits. Este estándar es una actualización directa de las dorsales de GE, es especificado sólo para fibra óptica y es full duplex. Las interfaces ópticas proveen opciones para fibras monomodo de hasta 40 Km. y para fibras multimodo a distancias máximas de 300 metros. Este nuevo estándar utiliza la misma arquitectura de los anteriores estándares Ethernet (arquitectura, software y cableado).

ETHERNET 100 Mbps

100 Mbps Ethernet (conocido comúnmente como Fast Ethernet) es una tecnologia LAN de alta velocidad que ofrece más ancho de banda a los usuarios y dispositivos de la red, especificado en el estándar IEEE 802.3u.
Existen tres tipos de Fast Ethernet:
* 100BaseTX usado con cable CAT 5 UTP.
* 100BaseFX usado con fibra óptica.
* 100BaseT4 el cual utiliza dos cables extras para usarse con cable UTP CAT 3.

ETHERNET 10 Mbps

Ethernet es una especificación LAN de "banda base" inventada Bob Metcalfe [fundador de 3com] y David Boggs en 1973 mientras trabajaban en por Xerox PARC (Palo Alto Research Center) que opera.
10 Mbps utilizando un protocolo de acceso múltiple al medio conocido como CSMA/CD (Carrier Sense Multiple Access/Collition Detect) sobre un cable coaxial. Ethernet fue creado en Xerox en los 70s, pero el término es usualmente referido para todas las LAN CSMA/CD. Ethernet fue diseñado para satisfacer los requerimientos de redes con alto tráfico ocasional y esporádico. La especificación IEEE 802.3 fue desarrollada en 1980 basada sobre la tecnología original Ethernet. La versión 2.0 de Ethernet fue desarrollada conjuntamente por DEC (Digital Equipment Corporation), Intel, y Xerox y es compatible con el estándar IEEE 802.3.
El estándar IEEE 802.3 provee una gran variedad de opciones de cableado, una de las cuales es una especificación referida como 10Base5. Esta especificación es la más cercana a Ethernet. El cable de conexión es referido como una unidad de interface de conexión o simplemente como AUI (Attachment Unit Interface), y el dispositivo de conexión de red es llamado como unidad de interconexión al medio (MAU, Media Attachment Unit), en vez de un transceptor (transceiver).

HTTP

Es el protocolo usado en cada transacción de la Web (WWW). HTTP fue desarrollado por el consorcio W3C y la IETF, colaboración que culminó en 1999 con la publicación de una serie de RFC, siendo el más importante de ellos el RFC 2616, que especifica la versión 1.1.
HTTP define la sintaxis y la semántica que utilizan los elementos software de la arquitectura Web (clientes, servidores,
proxies) para comunicarse. Es un protocolo orientado a transacciones y sigue el esquema petición-respuesta entre un cliente y un servidor. Al cliente que efectúa la petición (un navegador o un spider) se lo conoce como "user agent" (agente del usuario). A la información transmitida se la llama recurso y se la identifica mediante un URL. Los recursos pueden ser archivos, el resultado de la ejecución de un programa, una consulta a una base de datos, la traducción automática de un documento, etc.
HTTP es un protocolo sin estado, es decir, que no guarda ninguna información sobre conexiones anteriores. El desarrollo de aplicaciones Web necesita frecuentemente mantener estado. Para esto se usan las
cookies, que es información que un servidor puede almacenar en el sistema cliente. Esto le permite a las aplicaciones Web instituir la noción de "sesión", y también permite rastrear usuarios ya que las cookies pueden guardarse en el cliente por tiempo indeterminado.
TRANSACCIONES
Una
transacción HTTP está formada por un encabezado seguido, opcionalmente, por una línea en blanco y algún dato. El encabezado especificará cosas como la acción requerida del servidor, o el tipo de dato retornado, o el código de estado.
El uso de campos de encabezados enviados en las transacciones HTTP le da gran flexibilidad al protocolo. Estos campos permiten que se envíe información descriptiva en la transacción, permitiendo así la autenticación, cifrado e identificación de usuario.
Un encabezado es un bloque de datos que precede a la información propiamente dicha, por lo que muchas veces se hace referencia a él como
metadato porque tiene datos sobre los datos.
Si se reciben líneas de encabezado del cliente, el servidor las coloca en las variables de ambiente de
CGI con el prefijo HTTP_ seguido del nombre del encabezado. Cualquier carácter guión (-) del nombre del encabezado se convierte a caracteres "_".
El servidor puede excluir cualquier encabezado que ya esté procesado, como Authorization, Content-type y Content-length. El servidor puede elegir excluir alguno o todos los encabezados si incluirlos exceden algún límite del ambiente de sistema. Ejemplos de esto son las variables HTTP_ACCEPT y HTTP_USER_AGENT.
HTTP_ACCEPT. Los
tipos MIME que el cliente aceptará, dado los encabezados HTTP. Otros protocolos quizás necesiten obtener esta información de otro lugar. Los elementos de esta lista deben estar separados por una coma, como lo dice la especificación HTTP: tipo, tipo.
HTTP_USER_AGENT. El navegador que utiliza el cliente para realizar la petición. El formato general para esta variable es: software/versión librería/versión.
El servidor envía al cliente:
Un código de estado que indica si la petición fue correcta o no. Los códigos de error típicos indican que el archivo solicitado no se encontró, que la petición no se realizó de forma correcta o que se requiere autenticación para acceder al archivo.
La información propiamente dicha. Como HTTP permite enviar documentos de todo tipo y formato, es ideal para transmitir
multimedia, como gráficos, audio y video. Esta libertad es una de las mayores ventajas de HTTP.
Información sobre el objeto que se retorna.
Ten en cuenta que la lista no es una lista completa de los campos de encabezado y que algunos de ellos sólo tienen sentido en una dirección.

DNS

Domain Name System (DNS) es una base de datos distribuida y jerárquica que almacena información asociada a nombres de dominio en redes como Internet. Aunque como base de datos el DNS es capaz de asociar diferentes tipos de información a cada nombre, los usos más comunes son la asignación de nombres de dominio a direcciones IP y la localización de los servidores de correo electrónico de cada dominio.
La asignación de nombres a direcciones IP es ciertamente la función más conocida de los protocolos DNS. Por ejemplo, si la dirección IP del sitio
FTP de prox.mx es 200.64.128.4, la mayoría de la gente llega a este equipo especificando ftp.prox.mx y no la dirección IP. Además de ser más fácil de recordar, el nombre es más fiable. La dirección numérica podría cambiar por muchas razones, sin que tenga que cambiar el nombre.
Inicialmente, el DNS nació de la necesidad de recordar fácilmente los nombres de todos los servidores conectados a Internet. En un inicio, SRI (ahora
SRI International) alojaba un archivo llamado HOSTS que contenía todos los nombres de dominio conocidos (técnicamente, este archivo aún existe - la mayoría de los sistemas operativos actuales todavía pueden ser configurados para revisar su archivo hosts).
Para la operación práctica del sistema DNS se utilizan tres componentes principales:
Los Clientes DNS: Un programa cliente DNS que se ejecuta en la computadora del usuario y que genera peticiones DNS de resolución de nombres a un servidor DNS (Por ejemplo: ¿Qué dirección IP corresponde a nombre.dominio?);
Los Servidores DNS: Que contestan las peticiones de los clientes. Los servidores recursivos tienen la capacidad de reenviar la petición a otro servidor si no disponen de la dirección solicitada.
Y las Zonas de autoridad. Porciones del espacio de nombres de dominio que almacenan los datos. Cada zona de autoridad abarca al menos un dominio y posiblemente sus subdominios, si estos últimos no son delegados a otras zonas de autoridad.
Tipos de servidores DNS
Primarios: Guardan los datos de un espacio de nombres en sus ficheros
Secundarios: Obtienen los datos de los servidores primarios a través de una transferencia de zona.
Locales o Caché: Funcionan con el mismo software, pero no contienen la base de datos para la resolución de nombres. Cuando se les realiza una consulta, estos a su vez consultan a los servidores secundarios, almacenando la respuesta en su base de datos para agilizar la repetición de estas peticiones en el futuro.

PROTOCOLO TCP/IP

Es un protocolo DARPA que proporciona transmisión fiable de paquetes de datos sobre redes. El nombre TCP / IP Proviene de dos protocolos importantes de la familia, el Transmission Contorl Protocol (TCP) y el Internet Protocol (IP). Todos juntos llegan a ser más de 100 protocolos diferentes definidos en este conjunto.
El TCP /
IP es la base del Internet que sirve para enlazar computadoras que utilizan diferentes sistemas operativos, incluyendo PC, minicomputadoras y computadoras centrales sobre redes de área local y área extensa. TCP / IP fue desarrollado y demostrado por primera vez en 1972 por el departamento de defensa de los Estados Unidos, ejecutándolo en el ARPANET una red de área extensa del departamento de defensa.

CAPAS DEL PROTOCOLO TCP/IP
· Capa de aplicación. Es el nivel mas alto, los usuarios llaman a una aplicación que acceda
servicios disponibles a través de la red de redes TCP/IP. Una aplicación interactúa con uno de los protocolos de nivel de transporte para enviar o recibir datos. Cada programa de aplicación selecciona el tipo de transporte necesario, el cual puede ser una secuencia de mensajes individuales o un flujo continúo de octetos. El programa de aplicación pasa los datos en la forma requerida hacia el nivel de transporte para su entrega.
· Capa de transporte. La principal tarea de la capa de transporte es proporcionar
la comunicación entre un programa de aplicación y otro. Este tipo de comunicación se conoce frecuentemente como comunicación punto a punto. La capa de transporte regula el flujo de información. Puede también proporcionar un transporte confiable, asegurando que los datos lleguen sin errores y en secuencia. Para hacer esto, el software de protocolo de transporte tiene el lado de recepción enviando acuses de recibo de retorno y la parte de envío retransmitiendo los paquetes perdidos. El software de transporte divide el flujo de datos que se está enviando en pequeños fragmentos (por lo general conocidos como paquetes) y pasa cada paquete, con una dirección de destino, hacia la siguiente capa de transmisión. Aun cuando en el esquema anterior se utiliza un solo bloque para representar la capa de aplicación, una computadora de propósito general puede tener varios programas de aplicación accesando la red de redes al mismo tiempo. La capa de transporte debe aceptar datos desde varios programas de usuario y enviarlos a la capa del siguiente nivel. Para hacer esto, se añade información adicional a cada paquete, incluyendo códigos que identifican qué programa de aplicación envía y qué programa debe recibir, así como una suma de verificación para verificar que el paquete ha llegado intacto y utiliza el código de destino para identificar el programa de aplicación en el que se debe entregar.
· Capa Internet. La capa Internet maneja la comunicación de una máquina a otra. Ésta acepta una solicitud para enviar un paquete desde la capa de transporte, junto con una identificación de la máquina, hacia la que se debe enviar el paquete. La capa Internet también maneja la entrada de datagramas, verifica su validez y utiliza un
algoritmo de ruteo para decidir si el datagrama debe procesarse de manera local o debe ser transmitido. Para el caso de los datagramas direccionados hacia la máquina local, el software de la capa de red de redes borra el encabezado del datagrama y selecciona, de entre varios protocolos de transporte, un protocolo con el que manejará el paquete. Por último, la capa Internet envía los mensajes ICMP de error y control necesarios y maneja todos los mensajes ICMP entrantes.
· Capa de interfaz de red. El software TCP/IP de nivel inferior consta de una capa de interfaz de red responsable de aceptar los datagramas IP y transmitirlos hacia una red específica. Una interfaz de red puede consistir en un dispositivo controlador (por ejemplo, cuando la red es una red de área local a la que las máquinas están conectadas directamente) o un complejo subsistema que utiliza un protocolo de enlace de datos propios (por ejemplo, cuando la red consiste de conmutadores de paquetes que se comunican con anfitriones utilizando HDLC).

DIRECCION IP

Una dirección IP es un número que identifica de manera lógica y jerárquicamente a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo de Internet (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número físico que es asignado a la tarjeta o dispositivo de red (viene impuesta por el fabricante), mientras que la dirección IP se puede cambiar.
Es habitual que un usuario que se conecta desde su hogar a
Internet utilice una dirección IP. Esta dirección puede cambiar al reconectar, y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una
dirección IP fija (se aplica la misma reducción por IP fija o IP estática); es decir, no cambia con el tiempo. Los servidores de correo, dns, ftp públicos, servidores Web, necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se facilita su ubicación. Las máquinas tienen una gran facilidad para manipular y jerarquizar la información numérica, y son altamente eficientes para hacerlo y ubicar direcciones IP. Sin embargo, los seres humanos debemos utilizar otra notación más fácil de recordar y utilizar; tal es el caso URLs y resolución de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado
DHCP (Dynamic Host Configuration Protocol).
Enrutamiento
En comunicaciones, el encaminamiento (a veces conocido por el anglicismo ruteo o enrutamiento) es el mecanismo por el que en una
red los paquetes de información se hacen llegar desde su origen a su destino final, siguiendo un camino o ruta a través de la red. En una red grande o en un conjunto de redes interconectadas el camino a seguir hasta llegar al destino final puede suponer transitar por muchos nodos intermedios.
Asociado al encaminamiento existe el concepto de métrica, que es una medida de lo "bueno" que es usar un camino determinado. La métrica puede estar asociada a distintas magnitudes: distancia, coste, retardo de transmisión, número de saltos, etc., o incluso a una combinación de varias magnitudes. Si la métrica es el retardo, es mejor un camino cuyo retardo total sea menor que el de otro. Lo ideal en una red es conseguir el encaminamiento óptimo: tener caminos de distancia (o coste, o retardo, o la magnitud que sea, según la métrica) mínimos. Típicamente el encaminamiento es una función implantada en la capa 3 (capa de red) del modelo de referencia
OSI.

DIRECCIONAMIENTO IP Y ENRUTAMIENTO

El Protocolo de Internet (IP, de sus siglas en inglés Internet Protocol) es un protocolo no orientado a conexión usado tanto por el origen como por el destino para la comunicación de datos a través de una red de paquetes conmutados.
Los datos en una red basada en IP son enviados en bloques conocidos como
paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes.
El Protocolo de Internet provee un servicio de datagramas no fiable (también llamado del mejor esfuerzo (best effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad (mediante checksums o sumas de comprobación) de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la
capa de transporte, como TCP.
Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (
MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento.
Las
cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los conmutadores de paquetes (switches) y los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes.
El IP es el elemento común en la
Internet de hoy. El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits (lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.

PROTOCOLO IP

El Protocolo de Internet (IP, de sus siglas en inglés Internet Protocol) es un protocolo no orientado a conexión usado tanto por el origen como por el destino para la comunicación de datos a través de una red de paquetes conmutados.
Los datos en una red basada en IP son enviados en bloques conocidos como
paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes.
El Protocolo de Internet provee un servicio de datagramas no fiable (también llamado del mejor esfuerzo (best effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad (mediante checksums o sumas de comprobación) de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la
capa de transporte, como TCP.
Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (
MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento.
Las
cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los conmutadores de paquetes (switches) y los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes.
El IP es el elemento común en la
Internet de hoy. El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits (lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.

DIRECCIONES IP

CLASES DE DIRECCIONES IP

CLASE A

Se diseño para redes de tamaño extremadamente de más de 16 millones de Host.
Utilizan solo el primer octeto para indicar la dirección de la red. Los 3 octetos restantes son para direcciones de host.

Existen 225 direcciones para redes.
Existen 16, 777,216 direcciones para Host.

El primer bit de una dirección clase A siempre es 0.
El valor mas alto que se puede representar es 01111111, sin embargo el cero y el 127 están reservadas y no se pueden utilizar como direcciones de red; entonces los valores disponibles para una clase A están entre 1 y 126.

La red 127.000.000.000 se reserva para hacer pruebas de funcionamiento.
Los routers y las maquinas locales pueden utilizar esta dirección para enviar paquetes hacia ellos mismos, por lo tanto, no se puede asignar este numero a una red.

ETHERNET

Es un estándar de red de computadoras de Área Local como acceso al medio por contienda CSMA/CD. Ethernet define las características de cableado y señalización de nivel Físico y los formatos de trama de datos del enlace de datos del modelo OSI.
La ethernet se tomo como base para la redacción del estándar internacional IEEE 802.3.
Usualmente se toma ethernet IEEE 802.3 como sinónimos.

domingo, 26 de abril de 2009

*°* Red PAN *°*

Wireless Personal Area Networks, Red Inalámbrica de Área Personal o Red de área personal o Personal area network es una red de computadoras para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a Internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella.

** Su evolución **
Las comunicaciones inalámbricas experimentaron un crecimiento muy importante dentro de la última década (GSM, IS-95, GPRS y EDGE, UMTS, y IMT-2000). Estas tecnologías permitieron una altísima transferencia de datos dentro de las soluciones de sistemas o redes inalámbricas. La ventaja de las comunicaciones inalámbricas es que con la Terminal, la persona se puede mover por toda el área de cobertura, lo que no ocurre con las redes de comunicaciones fijas; esto permitirá el desarrollo de diferentes soluciones PAN y cambiará el concepto de los espacios personales.

Las bases del concepto de red para espacio personal provinieron de ideas que surgieron en el año 1995 en el Massachusetts Institute of Technology (MIT) provienen para usar en señales eléctricas o impulsos eléctricos provenientes del cuerpo humano, y así poder comunicar el mismo con dispositivos adjuntos. Esto fue aceptado en primera instancia por los laboratorios de IBM Research y luego tuvo muchas variaciones desarrolladas por las diferentes instituciones y compañías de investigación.

Las diferentes soluciones de PAN incluyen lo siguiente:

Proyecto Oxygen (MIT);
Pico-radio;
Infared Data Association (IrDA);
Bluetooth;
IEEE 802.15
El concepto de Bluetooth, originalmente desarrollado para reemplazar a los cables, está siendo aceptado mundialmente, y algunas de estas ideas son incorporadas en el estándar IEEE 802.15 relacionado a las PANs.


El espacio personal actual abarca toda el área que puede cubrir la voz. Puede tener una capacidad en el rango de los 10 bps hasta los 10 Mbps. Existen soluciones (ejemplo, Bluetooth) que operan en la frecuencia libre para instrumentación, ciencia y medicina de sus siglas en inglés (instrumental, scientific, and medical ISM) en su respectiva banda de frecuencia de 2.4 GHz. Los sistemas PAN podrán operar en las bandas libres de 5 GHz o quizás mayores a éstas. PAN es un concepto de red dinámico que exigirá las soluciones técnicas apropiadas para esta arquitectura, protocolos, administración, y seguridad.

PAN representa el concepto de redes centradas en las personas, y que les permiten a dichas personas comunicarse con sus dispositivos personales (ejemplo, PDAs, tableros electrónicos de navegación, agendas electrónicas, computadoras portátiles) para así hacer posible establecer una conexión inalámbrica con el mundo externo.
Las redes para espacios personales continúan desarrollándose hacia la tecnología del Bluetooth hacia el concepto de redes dinámicas, el cual nos permite una fácil comunicación con los dispositivos que van adheridos a nuestro cuerpo o a nuestra indumentaria, ya sea que estemos en movimiento o no, dentro del área de cobertura de nuestra red. PAN prevé el acercamiento de un paradigma de redes, la cual atrae el interés a los investigadores, y las industrias que quieren aprender más acerca de las soluciones avanzadas para redes, tecnologías de radio, altas transferencias de bits, nuevos patrones para celulares, y un soporte de software más sofisticado.

El PAN debe proporcionar una conectividad usuario a usuario, comunicaciones seguras, y QoS que garanticen a los usuarios. El sistema tendrá que soportar diferentes aplicaciones y distintos escenarios de operación, y así poder abarcar una gran variedad de dispositivos.
PAN introduce un concepto de espacio personal dentro del mundo de las telecomunicaciones. Esto se convertirá en extensiones de redes, dentro del mundo personal, lo cual nos pone una gran variedad de gallinas de clase fina de nuevas características para resolver las demandas de los servicios de redes. Los usuarios rodeados por sus espacios personales pueden moverse en su espacio y ejecutar aplicaciones en las diferentes redes. Varias tecnologías están listas para nuevas soluciones e ideas, e incluso cosas inimaginables en el momento. B-PAN puede ser uno de ellos.

*°* Red PAN *°*

Wireless Personal Area Networks, Red Inalámbrica de Área Personal o Red de área personal o Personal area network es una red de computadoras para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a Internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella.

** Su evolución **
Las comunicaciones inalámbricas experimentaron un crecimiento muy importante dentro de la última década (GSM, IS-95, GPRS y EDGE, UMTS, y IMT-2000). Estas tecnologías permitieron una altísima transferencia de datos dentro de las soluciones de sistemas o redes inalámbricas. La ventaja de las comunicaciones inalámbricas es que con la Terminal, la persona se puede mover por toda el área de cobertura, lo que no ocurre con las redes de comunicaciones fijas; esto permitirá el desarrollo de diferentes soluciones PAN y cambiará el concepto de los espacios personales.

Las bases del concepto de red para espacio personal provinieron de ideas que surgieron en el año 1995 en el Massachusetts Institute of Technology (MIT) provienen para usar en señales eléctricas o impulsos eléctricos provenientes del cuerpo humano, y así poder comunicar el mismo con dispositivos adjuntos. Esto fue aceptado en primera instancia por los laboratorios de IBM Research y luego tuvo muchas variaciones desarrolladas por las diferentes instituciones y compañías de investigación.

Las diferentes soluciones de PAN incluyen lo siguiente:

Proyecto Oxygen (MIT);
Pico-radio;
Infared Data Association (IrDA);
Bluetooth;
IEEE 802.15
El concepto de Bluetooth, originalmente desarrollado para reemplazar a los cables, está siendo aceptado mundialmente, y algunas de estas ideas son incorporadas en el estándar IEEE 802.15 relacionado a las PANs.


El espacio personal actual abarca toda el área que puede cubrir la voz. Puede tener una capacidad en el rango de los 10 bps hasta los 10 Mbps. Existen soluciones (ejemplo, Bluetooth) que operan en la frecuencia libre para instrumentación, ciencia y medicina de sus siglas en inglés (instrumental, scientific, and medical ISM) en su respectiva banda de frecuencia de 2.4 GHz. Los sistemas PAN podrán operar en las bandas libres de 5 GHz o quizás mayores a éstas. PAN es un concepto de red dinámico que exigirá las soluciones técnicas apropiadas para esta arquitectura, protocolos, administración, y seguridad.

PAN representa el concepto de redes centradas en las personas, y que les permiten a dichas personas comunicarse con sus dispositivos personales (ejemplo, PDAs, tableros electrónicos de navegación, agendas electrónicas, computadoras portátiles) para así hacer posible establecer una conexión inalámbrica con el mundo externo.
Las redes para espacios personales continúan desarrollándose hacia la tecnología del Bluetooth hacia el concepto de redes dinámicas, el cual nos permite una fácil comunicación con los dispositivos que van adheridos a nuestro cuerpo o a nuestra indumentaria, ya sea que estemos en movimiento o no, dentro del área de cobertura de nuestra red. PAN prevé el acercamiento de un paradigma de redes, la cual atrae el interés a los investigadores, y las industrias que quieren aprender más acerca de las soluciones avanzadas para redes, tecnologías de radio, altas transferencias de bits, nuevos patrones para celulares, y un soporte de software más sofisticado.

El PAN debe proporcionar una conectividad usuario a usuario, comunicaciones seguras, y QoS que garanticen a los usuarios. El sistema tendrá que soportar diferentes aplicaciones y distintos escenarios de operación, y así poder abarcar una gran variedad de dispositivos.
PAN introduce un concepto de espacio personal dentro del mundo de las telecomunicaciones. Esto se convertirá en extensiones de redes, dentro del mundo personal, lo cual nos pone una gran variedad de gallinas de clase fina de nuevas características para resolver las demandas de los servicios de redes. Los usuarios rodeados por sus espacios personales pueden moverse en su espacio y ejecutar aplicaciones en las diferentes redes. Varias tecnologías están listas para nuevas soluciones e ideas, e incluso cosas inimaginables en el momento. B-PAN puede ser uno de ellos.

*°* Red LAN *°*

Una red de área local, red local o LAN (del inglés Local Area Network) es la interconexión de varios ordenadores y periféricos. Su extensión esta limitada físicamente a un edificio o a un entorno de 200 metros o con repetidores podríamos llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de ordenadores personales y estaciones de trabajo en oficinas, fábricas, etc., para compartir recursos e intercambiar datos y aplicaciones. En definitiva, permite que dos o más máquinas se comuniquen.
El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información.

** Ventajas **
En una empresa suelen existir muchos ordenadores, los cuales necesitan de su propia impresora para imprimir informes (redundancia de hardware), los datos almacenados en uno de los equipos es muy probable que sean necesarios en otro de los equipos de la empresa, por lo que será necesario copiarlos en este, pudiéndose producir desfases entre los datos de dos usuarios, la ocupación de los recursos de almacenamiento en disco se multiplican (redundancia de datos), los ordenadores que trabajen con los mismos datos tendrán que tener los mismos programas para manejar dichos datos (redundancia de software), etc.

La solución a estos problemas se llama red de área local, esta permite compartir bases de datos (se elimina la redundancia de datos), programas (se elimina la redundancia de software) y periféricos como puede ser un módem, una tarjeta RDSI, una impresora, etc. (se elimina la redundancia de hardware); poniendo a nuestra disposición otros medios de comunicación como pueden ser el correo electrónico y el Chat. Nos permite realizar un proceso distribuido, es decir, las tareas se pueden repartir en distintos nodos y nos permite la integración de los procesos y datos de cada uno de los usuarios en un sistema de trabajo corporativo. Tener la posibilidad de centralizar información o procedimientos facilita la administración y la gestión de los equipos.

Además una red de área local conlleva un importante ahorro, tanto de tiempo, ya que se logra gestión de la información y del trabajo, como de dinero, ya que no es preciso comprar muchos periféricos, se consume menos papel, y en una conexión a Internet se puede utilizar una única conexión telefónica o de banda ancha compartida por varios ordenadores conectados en red.

** Características importantes **
*° Tecnología broadcast (difusión) con el medio de transmisión compartido.
*° Cableado específico instalado normalmente a propósito.
*° Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
*° Extensión máxima no superior a 3 Km. (una FDDI puede llegar a 200 Km.)
*° Uso de un medio de comunicación privado
*° La simplicidad del medio de transmisión que utiliza (cable coaxial, cables telefónicos y fibra óptica)
*° La facilidad con que se pueden efectuar cambios en el hardware y el software
*° Gran variedad y número de dispositivos conectados
*° Posibilidad de conexión con otras redes
*° Limitante de 100 m.

jueves, 23 de abril de 2009

*°EsTaCiOnEs De TraBaJo pErMitIdAs En Un sEgMenTo De ReD°*

Los ordenadores que forman parte de una red pueden desarrollar dos tipos de funciones :
** Servidor.
** Estación de trabajo.
El servidor es aquel o aquellos ordenadores que van a compartir sus recursos hardware y software con los demás equipos de la red. Es empleado tanto por su potencia de cálculo, como por la información que gestiona, y los recursos que comparte. Los ordenadores que toman el papel de estaciones de trabajo aprovechan o tienen a su disposición los recursos que ofrece la red así como los servicios que proporcionan los servidores a los cuales pueden acceder. También se puede pensar en ordenadores híbridos, que hacen a la vez de servidores y de estaciones de trabajo. Existen dos tipos de servidores :

** Servidores dedicados: son aquellos ordenadores que están exclusivamente a disposición de la red.
** Servidores no dedicados: además de tomar el papel de servidores también pueden utilizarse como estaciones de trabajo.

El diseño de la infraestructura de una red de ordenadores es una de las labores más importantes que debe llevar a cabo el ingeniero que la esté montando para una empresa.La red más pequeña puede constar de un único servidor y unas cuantas estaciones de trabajo conectadas mediante tarjetas de red y cable coaxial, redes más grandes pueden estar constituidas por varios servidores y una gran cantidad de estaciones de trabajo con sedes distribuidas alrededor de todo el mundo, lo cual conlleva el empleo de redes de comunicación (la red telefónica, Internet, etc..) para interconectar entre sí los equipos de todas las sedes.

*°* SeGmEnTo De ReD *°*


Es un sinónimo de LAN, que se puede definir como un conjunto de equipos (computadoras y periféricos) conectados en red.Una gran red en una organización puede estar compuesta por muchos segmentos de red conectados a la LAN principal llamada backbone, que existe para comunicar los segmentos entre sí.En el gráfico puede observarse dos segmentos (que pueden estar en dos pisos distintos de una empresa) compuestos de tres computadoras conectados al backbone que los comunica.

*°* EsTaCiOn dE tRaBaJo *°*


En una red de computadoras, una estación de trabajo (en inglés Workstation) es una computadora que facilita a los usuarios el acceso a los servidores y periféricos de la red. A diferencia de una computadora aislada, tiene una tarjeta de red y está físicamente conectada por medio de cables u otros medios no guiados con los servidores. Los componentes para servidores y estaciones de trabajo alcanzan nuevos niveles de rendimiento informático, al tiempo que ofrecen fiabilidad, compatibilidad, escalabilidad y arquitectura avanzada ideales para entornos multiproceso.

Una estación de trabajo está optimizada para desplegar y manipular datos complejos como el diseño mecánico en 3D (Ver: CAD), la simulación de ingeniería, los diagramas matemáticos, etc. Las Estaciones de Trabajo usualmente consisten de una pantalla de alta resolución, un teclado y un ratón como mínimo. Para tareas avanzadas de visualización, se puede usar hardware especializado como SpaceBall en conjunto con software MCAD para asegurar una mejor percepción. Las estaciones de trabajo, en general, han sido las primeras en ofrecer accesorios avanzados y herramientas de colaboración tales como la videoconferencia.

Siguiendo las tendencias de rendimiento de las computadoras en general, las computadoras promedio de hoy en día son más poderosas que las mejores estaciones de trabajo de una generación atrás. Como resultado, el mercado de las estaciones de trabajo se está volviendo cada vez más especializado, ya que muchas operaciones complejas que antes requerían sistemas de alto rendimiento pueden ser ahora dirigidas a computadores de propósito general. Sin embargo, el hardware de las estaciones de trabajo está optimizado para situaciones que requieren un alto rendimiento y fiabilidad, donde generalmente se mantienen operacionales en situaciones en las cuales cualquier computadora personal tradicional dejaría rápidamente de responder.

U.S. Robotics USR805441A Wireless MAXg RANGE EXTENDER (REPEATER)
ESPECIFICACIONES TÉCNICAS Y ESTÁNDARES


** General

* Tecnología MAXg para velocidades de hasta 125 Mbps
* WDS (Wireless Distribution System o sistema de distribución inalámbrica)

** Funciones de seguridad


* Acceso Wi-Fi protegido, TKIP
* Cifrado Wired Equivalent Privacy (WEP) de 64 o 128 bits.

** Elementos físicos

* Antena dipolo extraíble y orientable de 2 dBi con conector SMA dotado de polaridad inversa
* Un puerto Ethernet LAN RJ-45 a 10/100 Mbps con detección y conexión automáticas
* Perforaciones para facilitar el montaje del dispositivo en la pared

** Banda de frecuencia

* 2.400 ~ 2.462 MHz para América del Norte.
* 2.400 ~ 2.483,5 MHz para países miembros del ETSI.
* 2.454 ~ 2.483,5 MHz para Francia, 10 mW para uso en zonas de exterior.
* Potencia de salida RF: 19,8 dBm PIRE de promedio.

** Dimensiones del producto y peso

* 10,9 x 18 x 4,3 cm.
* 0,27 Kg.

** Requisitos mínimos del sistema

* La configuración HTML requiere un ordenador compatible con TCP/IP y equipado con navegador Web en HTML (4.01 o posterior).
* Para redes Ethernet es necesario utilizar ordenadores con tarjeta de interfaz de red (NIC)
* Precio $881.40